Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730819

ABSTRACT

The pyrolysis separation of calcium and magnesium from phosphate tailings is an important process due to its high-value resource utilization. In this paper, aiming to address the problems of high energy consumption, a slow decomposition rate and the low activity of decomposition products in the high-temperature pyrolysis of phosphate tailings, the medium-temperature pyrolysis of phosphate tailings under a H2O atmosphere was carried out, and the phase reconstruction and activation of pyrolysis process were discussed. The results showed that compared with N2, air and CO2 atmospheres, the pyrolysis process of phosphate tailings in a H2O atmosphere was changed from two stages to one stage, the starting decomposition temperature was reduced to 500 °C and the decomposition time was shortened to 30 min. The order of the influence of each factor on the pyrolysis of phosphate tailings was temperature > H2O pressure > holding time. Under the optimized pyrolysis conditions, the yield of CaMg(CO3)2 decomposition of phosphate tailings into MgO and CaO was 97.3% and 98.1%, respectively, and the reactivity of MgO was 31.6%. The distribution of Ca and Mg elements in the phosphate tailings after pyrolysis showed a negative correlation, and both of them no longer formed associated compounds; Ca mainly existed in the form of Ca(OH)2, Ca5(PO4)3F, CaSiO3 and CaF2, and Mg mainly existed in the form of MgO, MgF2 and Mg(OH)2.

2.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Article in English | MEDLINE | ID: mdl-38702935

ABSTRACT

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Subject(s)
Antipsychotic Agents , Aripiprazole , Disease Models, Animal , Dizocilpine Maleate , Hippocampus , Hyperkinesis , Schizophrenia , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Schizophrenia/drug therapy , Hippocampus/drug effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dizocilpine Maleate/pharmacology , Mice , Hyperkinesis/drug therapy , Male , Locomotion/drug effects , Locomotion/physiology , Excitatory Amino Acid Antagonists/pharmacology , Mice, Inbred C57BL , Animals, Newborn , Neurons/drug effects , Theta Rhythm/drug effects , Theta Rhythm/physiology
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 346-352, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645874

ABSTRACT

Objective: To investigate the mediating effect of social problems in the effect pathway of emotional dysregulation influencing anxiety/depression emotions in children with attention-deficit/hyperactivity disorder (ADHD) and to explore the potential moderating effect of family functionality. Methods: A total of 235 children diagnosed with ADHD were enrolled in the study. The paticipants' age ranged from 6 to 12. Emotion Regulation Checklist, Achenbach's Child Behavior Checklist (CBCL) Social Problems Subscale, CBCL Anxious/Depressed Subscale, and Family Assessment Device were used to evaluate the emotional regulation, social problems, anxiety/depression emotions, and family functionality of the participants. A moderated mediation model was employed to analyze whether social problems and family functionality mediate and moderate the relationship between emotional regulation and anxiety/depression emotions. Results: Social problems partially mediated the impact of emotional dysregulation on anxiety/depression emotions in ADHD children, with the direct effect being 0.26 (95% confidence interval [CI]: [0.17, 0.36], P<0.001), the indirect effect being 0.13 (95% CI: [0.07, 0.19], P<0.001), and the mediating effect accounting for 33% of the total effect. Family functionality exhibited a positive moderating effect on the relationship between social problems and anxiety/depression emotions. Conclusion: This study contributes to the understanding of complex factors influencing anxiety/depression in children with ADHD, providing reference for the further development of targeted interventions for children with ADHD and the improvement of prognosis.


Subject(s)
Anxiety , Attention Deficit Disorder with Hyperactivity , Depression , Emotional Regulation , Humans , Attention Deficit Disorder with Hyperactivity/psychology , Child , Depression/etiology , Depression/psychology , Anxiety/etiology , Anxiety/psychology , Female , Male , Family/psychology
4.
Am J Med Genet C Semin Med Genet ; : e32085, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563234

ABSTRACT

LINS1 is the human homolog of the Drosophila segment polarity gene that encodes an essential regulator of the wingless/Wnt signaling. By 2011, only seven pedigrees (16 patients) with eight causative variants in LINS1 gene have been reported. These cases mainly presented with infancy-/child-onset neurodevelopmental disorders, facial dysmorphia, and other clinical features, and a wide spectrum of clinically distinct phenotypes were also manifested. In our study, two brothers in a family were admitted and diagnosed with child-onset movement disorders, slight intellectual disability, psychological symptoms, eye problems, urinary and bowel dysfunction, mitral value prolapse, and Q-T prolongation. By exome sequencing, we identified a nonsense homozygous pathogenic variant (LINS1: c.274C > T (p.Q92X)), which had been reported in a case diagnosed with intellectual disability and psychiatric disorders (such as schizophrenia and anxiety). Compared with this case, the clinical features of our cases were distinct. In particular, our cases displayed unusual features of heart and blood system. Furthermore, the genotype-phenotype relationship analysis suggested that distinct phenotypes presented in cases carrying variants in different domains of the LINS1 gene. In conclusions, our findings suggest the high clinical variations in the LINS1 variants-related disorders. Moreover, the Q92X might be a recurrent variant in Hans of Southern China.

5.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587398

ABSTRACT

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Despite the development of new treatment plans in recent years, the prognosis for osteosarcoma patients has not significantly improved. Therefore, it is crucial to establish a robust preclinical model with high fidelity. The patient-derived xenograft (PDX) model faithfully preserves the genetic, epigenetic, and heterogeneous characteristics of human malignancies for each patient. Consequently, PDX models are considered authentic in vivo models for studying various cancers in transformation studies. This article presents a comprehensive protocol for creating and maintaining a PDX mouse model that accurately mirrors the morphological features of human osteosarcoma. This involves the immediate transplantation of freshly resected human osteosarcoma tissue into immunocompromised mice, followed by successive passaging. The described model serves as a platform for studying the growth, drug resistance, relapse, and metastasis of osteosarcoma. Additionally, it aids in screening the target therapeutics and establishing personalized treatment schemes.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Child , Humans , Animals , Mice , Heterografts , Xenograft Model Antitumor Assays , Neoplasm Recurrence, Local , Osteosarcoma/genetics , Osteosarcoma/pathology , Disease Models, Animal , Bone Neoplasms/genetics , Bone Neoplasms/pathology
6.
Front Optoelectron ; 17(1): 12, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689035

ABSTRACT

Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

7.
Front Immunol ; 15: 1355388, 2024.
Article in English | MEDLINE | ID: mdl-38550578

ABSTRACT

Ionizing radiation has garnered considerable attention as a combination partner for immunotherapy due to its potential immunostimulatory effects. In contrast to the more commonly used external beam radiation, we explored the feasibility of combining chimeric antigen receptor (CAR) T cell therapy with targeted radionuclide therapy (TRT), which is achieved by delivering ß-emitting 177Lu-DOTATATE to tumor via tumor-infiltrating CAR T cells that express somatostatin receptor 2 (SSTR2). We hypothesized that the delivery of radiation to tumors could synergize with CAR T therapy, resulting in enhanced antitumor immunity and tumor response. To determine the optimal dosage and timing of 177Lu-DOTATATE treatment, we measured CAR T cell infiltration and expansion in tumors longitudinally through positron emission tomography (PET) using a SSTR2-specific positron-emitting radiotracer,18F-NOTA-Octreotide. In animals receiving CAR T cells and a low-dose (2.5 Gy) of TRT following the administration of 177Lu-DOTATATE, we observed a rapid regression of large subcutaneous tumors, which coincided with a dramatic increase in serum proinflammatory cytokines. Tumor burden was also reduced when a higher radiation dose (6 Gy) was delivered to the tumor. However, this higher dose led to cell death in both the tumor and CAR T cells. Our study suggests that there may exist an optimum range of TRT dosage that can enhance T cell activity and sensitize tumor cells to T cell killing, which may result in more durable tumor control compared to a higher radiation dose.


Subject(s)
Neoplasms , Animals , Neoplasms/drug therapy , Octreotide/therapeutic use , T-Lymphocytes , Immunotherapy , Radioisotopes/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-38369725

ABSTRACT

BACKGROUND: Osteosarcoma is the most common primary bone cancer in children and adolescents with high metastatic ability. AIM: This study aimed to explore the inhibitory effects of (S)-10-hydroxycamptothecin (HCPT) on osteosarcoma cell growth and metastasis as well as the underlying mechanism. METHOD: The osteosarcoma cells of 143B and U-2 OS (U-2), treated with HCPT (20, 100, or 300 nM), underwent detections, such as CCK-8, flow cytometry, Transwell, wound healing, and immunoblotting. EMT-related key proteins, like N-cadherin, Snail, and Vimentin, were found to be down-regulated, while E-cadherin was up-regulated dose-dependently in HCPT-exposed 143B and U-2 cells. Additionally, incubation of 143B and U-2 cells with HCPT for 3 hours dosedependently reduced the expression ratios of p-LATS1/LATS1, p-MST1/MST1, p-YAP/YAP, and p-TAZ/TAZ. RESULT: Taken together, our study has demonstrated HCPT to inhibit osteosarcoma growth and metastasis potentially by activating the HIPPO signaling pathway and reversing EMT. CONCLUSION: HCPT might be a candidate agent for the prevention and treatment of osteosarcoma.

9.
Anticancer Drugs ; 35(3): 292-297, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38179893

ABSTRACT

Although patients with ALK-positive non-small cell lung cancer (NSCLC) are initially effective on treatment with ALK tyrosine kinase inhibitors (TKIs), resistance will inevitably develop. Of these patients, 2/3 will develop ALK-independent resistance and little is known about the mechanisms of ALK-independent resistance. In pre-clinical studies, the activation of several bypass signaling pathways has been implicated in the development of resistance, including the MET, EGFR, SRC and IGF1R pathways. Among these, the MET pathway is one of the signaling pathways that has recently been extensively studied, and activation of this pathway is one of the mechanisms of ALK-independent drug resistance. Here, we report a successful case of an advanced NSCLC patient who was resistant to treatment with ALK TKIs and developed MET amplification, who achieved 23 months of progression-free survival after post-line treatment with ensartinib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Piperazines , Pyridazines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Anaplastic Lymphoma Kinase/genetics , ErbB Receptors/genetics , Drug Resistance, Neoplasm , Mutation
10.
J Chem Phys ; 160(3)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38235798

ABSTRACT

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression. Our investigation vividly reveals the phase transition behaviors of MnBi2Te4 under high pressure cycling and paves the experimental way to find topological phases under high pressure.

11.
Sensors (Basel) ; 24(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257565

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technology in trace analysis. However, the wide applications of SERS in practice are limited by the expensive substrate materials and the complicated preparation processes. Here we report a simple and economical galvanic-replacement-assisted synthesis route to prepare Ag nanoparticles on Cu(0) foil (nanoAg@Cu), which can be directly used as SERS substrate. The fabrication process is fast (ca. 10 min) and easily scaled up to centimeters or even larger. In addition, the morphology of the nanoAg@Cu (with Ag particles size from 30 nm to 160 nm) can be adjusted by various additives (e.g., amino-containing ligands). Finally, we show that the as-prepared nanoAg@Cu can be used for SERS characterization of two-dimensional polymers, and ca. 298 times relative enhancement of Raman intensity is achieved. This work offers a simple and economical strategy for the scalable fabrication of silver-based SERS substrate in thin film analysis.

12.
Cancers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067255

ABSTRACT

Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.

13.
Neoplasma ; 70(5): 670-682, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38053377

ABSTRACT

Radiotherapy and chemotherapy have improved the 5-year survival rate of nasopharyngeal carcinoma (NPC) patients, but the side effects generally lead to unsatisfactory clinical efficacy. It's imperative to explore the pathogenesis of NPC to find better diagnostic and therapeutic methods. Small nucleolar RNA host genes (SNHGs) are special lncRNAs, which can be further spliced to produce small nucleolar RNAs (snoRNAs). SNHG1 has been found to be associated with various cancers. However, only a few studies reported the relationship between SNHG1 and NPC. This study first analyzed the diagnostic performance and related signaling pathways of SNHG1 in NPC through bioinformatics. The expression of SNHG1 was verified by RT-qPCR, and the expression of the signaling pathway was detected using immunohistochemistry. Bioinformatics analysis results showed that SNHG1 was significantly overexpressed in head and neck squamous cell carcinoma (HNSC) and NPC tissues. RT-qPCR detection confirmed the significant overexpression of SNHG1 in NPC tissues. Enrichment analysis showed that SNHG1 may act on NPC through the PI3K-AKT signaling pathway. Immunohistochemistry experiment revealed PI3K-AKT signaling pathway proteins (PI3K AKT and EGFR) positively expressed and CASP3 weakly positively expressed in NPC tissues. Therefore, we concluded that SNHG1 is a prospective biomarker and may act on NPC through the PI3K-AKT signaling pathway.


Subject(s)
Nasopharyngeal Neoplasms , RNA, Long Noncoding , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics
14.
J Vis Exp ; (201)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38047565

ABSTRACT

Frozen shoulder is a kind of aseptic inflammatory disease of the shoulder caused by strain, trauma, and other reasons, resulting in shoulder joint pain and limited function. The protocol presented here demonstrates the operation of a small needle knife in treating frozen shoulders, including patient management, material preparation, positioning, operation, and postoperative care. The purpose of this protocol is to relieve the pain and functional limitations and improve the living ability of patients with frozen shoulders. In our study, 76 stage I-II frozen shoulder patients who met the inclusion criteria were randomly divided into a control group and a treatment group (n=38). Patients in the control group received functional exercise, while the treatment group received small needle knife therapy with functional exercise. The visual analogue scores (VAS), the Constant and Murley scores (CMS), and the thickness of the coracohumeral ligament (CHL) under ultrasound were evaluated. After small needle knife therapy, the VAS score was significantly lower in the treatment group (5.11 ± 0.89) than in the control group (5.49 ± 0.65; t=-2.065, p<0.05); the CMS score was significantly higher in the treatment group (64.72 ± 4.78) than in the control group (60.97 ± 6.00; t=2.947, p<0.05); the CHL thickness was significantly decreased in the treatment group (2.38 ± 0.36) than in the control group (2.57 ± 0.42; t=-2.117, p<0.05). These results indicate that the small needle knife significantly relieved the pain symptoms, improved the shoulder function, reduced the CHL thickness, and improved the quality of life and, therefore, had significant therapeutic efficacy in stage I-II frozen shoulder patients.


Subject(s)
Bursitis , Quality of Life , Humans , Shoulder , Treatment Outcome , Bursitis/surgery , Pain
15.
Diabetes Metab Syndr Obes ; 16: 4147-4156, 2023.
Article in English | MEDLINE | ID: mdl-38145256

ABSTRACT

Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.

16.
EJNMMI Radiopharm Chem ; 8(1): 36, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930454

ABSTRACT

BACKGROUND: The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (89Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood. RESULTS: The 89Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30-60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered 89Zr-labelled leukocytes produced high-contrast murine PET images at 1 h-5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously 89Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [89Zr]Zr4+ ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo. CONCLUSIONS: Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.

17.
Dalton Trans ; 52(43): 15928-15934, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37840460

ABSTRACT

The development of non-precious metal electrocatalysts with high activity for the oxygen evolution reaction (OER) is a crucial and challenging task. In this work, we proposed a solvent-free in situ metal-organic framework (MOF) growth strategy for the fabrication of an Fe-doped CoO/Co electrocatalyst. This approach not only partially granted the MOF's porous structure to the catalyst but also resulted in a tighter combination between the Co metal and CoO, thereby enhancing its electrical conductivity. Furthermore, this method enabled the Fe species to be more uniformly dispersed on CoO/Co, which significantly exposed more active sites for efficient electrocatalysis. The entire synthesis process was solvent-free, except for a small amount of water and ethanol used during catalyst washing. The as-synthesized Fe-CoO/Co electrocatalyst exhibited superior OER activity on a glass carbon electrode, with η = 276 mV at a current density of 10 mA cm-2, even higher than that of the commercial precious IrO2/C catalyst. Additionally, it was also extended to prepare a Ni-doped CoO/Co electrocatalyst by the same procedure with satisfactory OER performance. This work presents a new preparation approach for MOF-derived catalysts with potential applications in energy conversion and beyond.

18.
PLoS One ; 18(10): e0293604, 2023.
Article in English | MEDLINE | ID: mdl-37903124

ABSTRACT

Genetic maps provide the foundation for QTL mapping of important traits of crops. As a valuable food and forage crop, rye (Secale cereale L., RR) is also one of the tertiary gene sources of wheat, especially wild rye, Secale cereale subsp. segetale, possessing remarkable stress tolerance, tillering capacity and numerous valuable traits. In this study, based on the technique of specific-locus amplified fragment sequencing (SLAF-seq), a high-density single nucleotide polymorphism (SNP) linkage map of the cross-pollinated (CP) hybrid population crossed by S. cereale L (female parent) and S. cereale subsp. segetale (male parent) was successfully constructed. Following preprocessing, the number of 1035.11 M reads were collected and 2425800 SNP were obtained, of which 409134 SNP were polymorphic. According to the screening process, 9811 SNP markers suitable for constructing linkage groups (LGs) were selected. Subsequently, all of the markers with MLOD values lower than 3 were filtered out. Finally, an integrated map was constructed with 4443 markers, including 1931 female mapping markers and 3006 male mapping markers. A major quantitative trait locus (QTL) linked with spike length (SL) was discovered at 73.882 cM on LG4, which explained 25.29% of phenotypic variation. Meanwhile two candidate genes for SL, ScWN4R01G329300 and ScWN4R01G329600, were detected. This research presents the first high-quality genetic map of rye, providing a substantial number of SNP marker loci that can be applied to marker-assisted breeding. Additionally, the finding could help to use SLAF marker mapping to identify certain QTL contributing to important agronomic traits. The QTL and the candidate genes identified through the high-density genetic map above may provide diverse potential gene resources for the genetic improvement of rye.


Subject(s)
Plant Breeding , Secale , Secale/genetics , Chromosome Mapping/methods , Quantitative Trait Loci/genetics , Phenotype , Polymorphism, Single Nucleotide , Genetic Linkage
19.
Front Immunol ; 14: 1265406, 2023.
Article in English | MEDLINE | ID: mdl-37876941

ABSTRACT

Background: Inflammation is critically involved in the development of human cancer, and blood inflammatory biomarkers have been proposed to indicate the risk of different cancer types. Methods: Using the Swedish Apolipoprotein-Related Mortality Risk (AMORIS) Cohort (N=812,073), we first performed a time-to-event analysis to evaluate the association of the baseline level of 12 blood inflammatory biomarkers measured during 1985-1996 with the subsequent risk of head and neck cancer (HNC) identified through the nationwide Swedish Cancer Register until end of 2020. A nested case-control study was further conducted to demonstrate the longitudinal trends of the studied biomarkers during the 30-year period prior to diagnosis of HNC. Results: In the time-to-event analysis, we identified a total of 2,510 newly diagnosed HNC cases. There was an increased risk of HNC per standard deviation (SD) increase of haptoglobin (hazard ratio [HR]: 1.25; 95% confidence interval [CI]: 1.21-1.30), leukocytes (HR: 1.22; 95%CI: 1.17-1.28), sedimentation rate (HR: 1.17; 95%CI: 1.07-1.29), and monocytes (HR: 1.34; 95%CI: 1.07-1.68) at baseline, after adjustment for age, sex, fasting status, occupational status, and country of birth. In contrast, there was a decreased risk of HNC per SD increase of lymphocytes in % (HR: 0.85; 95%CI: 0.73-0.99) and lymphocyte-to-monocyte ratio (LMR) (HR: 0.81; 95%CI: 0.69-0.95) at baseline. In the nested case-control study using repeatedly measured biomarker levels, we found that individuals with HNC had consistently higher levels of haptoglobin, leukocytes, sedimentation rate, and monocytes, as well as consistently lower levels of lymphocytes in % and LMR, during the 30-year period prior to diagnosis, compared to controls. Conclusion: Based on a cohort of more than half a million participants with up to 35 years of follow-up, our findings provide solid evidence supporting the presence of alterations in blood inflammatory biomarkers during the decades before diagnosis of HNC.


Subject(s)
Haptoglobins , Head and Neck Neoplasms , Humans , Case-Control Studies , Sweden/epidemiology , Biomarkers , Head and Neck Neoplasms/diagnosis
20.
Biol Trace Elem Res ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801218

ABSTRACT

Selenium binding protein 1 (SELENBP1) is involved in neurologic disorders, such as multiple sclerosis, spinal cord injury, Parkinson's disease, epilepsy, and schizophrenia. However, the role of SELENBP1 in the neurogenesis of depression, which is a neurologic disorder, and the underlying mechanisms of oxidative stress and inflammation in depression remain unknown. In this study, we evaluated the changes in the expression levels of SELENBP1 in the hippocampus of a mouse model of depression and in the serum of human patients with depression using the Gene Expression Omnibus database. These changes were validated using blood samples from human patients with depression and mouse models with chronic unpredictable mild stress (CUMS)-induced depressive-like behavior. We also investigated the effects of SELENBP1 knockout (KO) on inflammation, oxidative stress, and hippocampal neurogenesis in mice with CUMS-induced depression. Our results revealed that SELENBP1 levels was decreased in the blood of human patients with depression and in the hippocampus of mice with CUMS-induced depression. SELENBP1 KO increased CUMS-induced depressive behavior in mice and caused dysregulation of inflammatory cytokines and oxidative stress. This led to a decrease in the numbers of doublecortin- and Ki67-positive cells, which might aggravate CUMS-induced depressive symptoms. These findings suggest that SELENBP1 might be involved in the regulation of neurogenesis in mice with depression and could be served as a potential target for diagnosing and treating depression.

SELECTION OF CITATIONS
SEARCH DETAIL
...